
Towards Automatic Binary Runtime Loop

De-Parallelization using On-Stack Replacement

Marwa Yusufab∗, Ahmed El-Mahdyac, Erven Rohoud

aComputer Science and Engineering Department, Egypt-Japan University for Science and
Technology, Alexandria, Egypt

bOn leave from Benha University, Egypt
cOn leave from Alexandria University, Alexandria, Egypt

dUniv Rennes, Inria, CNRS, IRISA

Abstract

Runtime compilation has opportunities to parallelize code which are generally not

available using static parallelization approaches. However, the parallelized code

can possibly slowdown the performance due to unforeseen parallel overheads such

as synchronization and speculation support pertaining to the chosen parallelization

strategy and the underlying parallel platform. Moreover, with the wide usage of

heterogeneous architectures, such choice options become more pronounced. In

this paper, we consider an adaptive form of the parallelization operation, for the

first time. We propose a method for performing on-stack de-parallelization for a

parallelized binary loop at runtime, thereby allowing for rapid loop replacement

with a more optimized one. For this paper, we consider a loop parallelization

strategy and propose a corresponding de-parallelization method. The method re-

lies on stopping the execution at safe points, gathering threads’ states, producing a

corresponding serial code, and continuing execution serially. The decision to de-

parallelize or not is taken based on the anticipated speedup. To assess the extent

of our approach, we have conducted an initial study on a small set of programs

with various parallelization overheads. Results show up to 4× performance im-

provement for a synchronization intense program on a 4-core Intel processor.

∗Corresponding author

Email addresses: marwa.yusuf@ejust.edu.eg (Marwa Yusufab),

ahmed.elmahdy@ejust.edu.eg (Ahmed El-Mahdyac), erven.rohou@inria.fr
(Erven Rohoud)

Preprint submitted to Information Processing Letters January 21, 2019



Keywords: compilers, parallelization, optimization, on-stack replacement,

binary

1. Introduction

Parallel execution is the default nowadays, and hence automatic paralleliza-

tion. Moreover, automatic parallelization at runtime provides better optimization

opportunity than static parallelization, as more information is available at runtime.

However, there are situations where the parallelized program may prove—after

starting execution—to be slower than the serial one or at least can be parallelized

better. These situations mainly arise due to unpredictable execution behaviour that

may result in excessive synchronization operations, false-sharing, changes in the

underlying system load (or resources in case of dynamic infrastructures), thereby

hurting parallel performance, yielding better performance for the original serial

program [4].

In this paper, we consider on-stack replacement (OSR) as a potential solu-

tion for the above problem. Typically OSR allows replacing a serially executing

function with a more optimized version without requiring returning from the func-

tion [5], as well as deoptimizing a speculatively optimized function when specula-

tion assumption fails. Existing OSR techniques rely on the compiler cooperation

to insert marked points in code to activate OSR. In our proposed design, OSR is

applied directly on running binary parallel code at an arbitrary execution time,

and replaces it with a serial one, without the need for compiler cooperation or

recompilation. Later on, this generated serial binary can be re-parallelized bet-

ter to be more suitable to the environment. This allows adaptive parallelization

optimizations.

The rest of this paper is organized as follows: Section 2 discusses related

work. Section 3 explains the proposed design. Section 4 conducts an initial study

on a small set of programs assessing the extent of our method. Finally, Section 5

concludes and suggests possible future work.

2. Related Work

OSR is typically used to switch from a running function to another dynami-

cally or statically generated function. This usually requires extracting the stack

state from the old function and injecting it with the proper mapping into the new

function, either by generating prologue code that creates the new stack or by cre-

ating the new stack directly.

2



OSR is used for dynamic optimization [1, 5, 9, 10, 8, 11]. Also, it is used for

dynamic deoptimization [6, 12, 3]. Another usage of OSR is for obfuscation [13].

Some work are made to introduce frameworks with well defined APIs for OSR [7,

2].

All of the above related work considered performing OSR using compiler co-

operation to insert instrumentation points in code to activate OSR and to compile

alternative functions either statically or dynamically. In our proposed technique,

no compiler cooperation is needed, as OSR is applied on binary code at runtime,

and the dynamically generated code is binary.

Also, as far as we know, all other related work deoptimize from where serial

state is available. In our proposed work, the running function is de-parallelized at

an arbitrary point of execution, with the extra challenge of gathering parallel state

from multiple threads, and serialising the execution accordingly.

3. Proposed Design

S0

S1

S2

Ii

S3

(a) Original serial loop

S0

I1

I2

Ii

In

S3

(b) Unrolled loop

S0
’

I1 I2 I3 I4

I5 I6 I7 I8

I9 I10 I11 I12

I13 I14 I15 I16

S3
’

S4

(c) Parallelized loop,

execution state at an

arbitrary time

S0
”

I2

I6

I8

I9

I10

sparse part

I12

I16

continuous part

S3
”

S4

(d) Serial loop after OSR

Figure 1: An example on deparallelization process

Figure 1 is an example to explain how de-parallelization is done. The example

is an arbitrary loop whose sequence is shown in Figure 1a, where ‘S’ is a block

of statements and ‘I’ is an iteration. Figure 1b represents the real sequence of

execution of loop iterations. Figure 1c is an example of a parallelized loop of 16

iterations distributed over 4 threads in round robin way. This figure represents the

program at an arbitrary instant of time, where gray nodes are already executed and

white ones are not. If at this point the OSR de-parallelization decision is taken, the

program is paused, its state is gathered, the remaining iterations from each thread

3



are collected and sewed together in their original serial order to produce a serial

code. Figure 1d shows the resulting execution after de-parallelization.

De-parallelization
client

generate gather
function 

generate loopy
function

insert trampoline to
gather

target address 
space

main: 
 code before 
 parallel loop 
 code after 

code cache (cc)

loopy

thread 1 stack

thread n stack

. 

. 

. 

gather

Figure 2: System Overview

Figure 2 shows our proposed de-

sign. Our system is designed as a client

that attaches to the target running pro-

gram at runtime. It starts by calling

an external runtime binary profiler and

analyzer that detects that the program

has a parallel for-loop, and the perfor-

mance is expected to be better if the

rest of the loop is executed in serial.

An extended, more detailed model of

the model in [5] is used to decide de-

parallelization:

Tde-parallel = TOSRcompile+TremainingSerial+TruntimeOverhead

where the terms are defined as follows:

TOSRcompile : OSR processing time that includes state gathering and

generating de-parallelized code; this is a pre-set constant

based on previous compiler behaviour relative to the size

of the stack and the number of threads of the given

program;

TremainingSerial : execution time of the remaining program after

de-parallelization; this is expected by the profiler after

calculating the execution time of one iteration without

blocking for other iterations and multiplying this time by

the number of remaining iterations;

TruntimeOverhead : overhead during runtime due to extra checks and jumps at

already executed iterations; this part is resulting from the

sparse part of iterations at the start of executing the

remaining iterations (will be clarified shortly), and it is

computed based on the extent of sparsity of the

remaining iterations;

Also, define Tparallel to be the remaining parallel execution time; expected by

the profiler (based on profiling the executed iterations so far and given the number

4



of remaining iterations), then de-parallelization decision is taken if Tde-parallel <

Tparallel, i.e, if the estimated remaining program time is longer than the OSR pro-

cess time + the estimated remaining serialized program time (including the run-

time overhead) then de-parallelization is done. Otherwise, the program continues

as is.

If de-parallelization is decided, the running program is paused and the client

creates a code cache into the target address space to accommodate for the gener-

ated code. Then, the state is captured by the generated gather function, the code is

de-parallelized into the generated loopy function and execution continues. Details

of these client steps are as follows:

1. A code cache is created in the target address space.

2. The de-parallelization process is started at the execution of next iteration

after OSR decision is fired. This is done by replacing the first instruction

of the loop with code that checks the thread id of each thread executing this

code, to pause them all except for one thread, in which case it continues to

a trampoline that jumps to the address of the code cache start, which is the

address of gather function.

3. Gather function is generated, which gathers the threads’ status from threads’

stacks and combine them in a single unified stack. Threads’ status includes

shared variables and private variables. Shared variables are synchronized

by nature, so no special action is needed for them. Private variables’ values

are taken from the latest executing iteration. The resulting stack map is used

later in generating loopy function; Specifically, the iteration index value for

each thread is used in generating the prologue of loopy function, as will be

explained shortly.

4. Loopy function is generated, which has two parts; the prologue that is re-

sponsible for executing the part of iterations that is sparse, and the second

part which executes the rest of the loop. The prologue works as shown in

procedure 1, lines 2-16. The remaining iterations to be executed are in-

spected to find the areas where iterations’ execution is sparse, i.e executed

and un-executed iterations are mixed. The code runs from the minimum it-

eration to the maximum one in the mentioned area (iterations 2 to 10 in the

example). A loop is created to iterate over all iterations in a level by level

of threads. Each thread is checked for remaining iteration to be executed in

this level. As an optimization, if a thread has no iterations to be executed

in the sparse area (like third thread), no condition is created for it. After

finishing all iterations in the sparse area, a normal loop is created to execute

5



the rest of iterations normally, without extra checks. Constraining the spe-

cial code on the sparse area only allows for better later parallelization to be

applied on the rest of the loop and makes the technique applicable on both

for and while loops. This code can be optimized later on and parallelized if

needed. As the same sequential execution order, defined by original serial

code, is maintained; the correctness of the program and that no deadlock

would happen are guaranteed. Of course, preserving this order comes at a

cost (more checks for the already executed parts). This cost changes with

how much remaining iterations are sparse. However, this cost would be cal-

culated during the OSR decision step, hence it would be amortized. The

second part (lines 30-35) of the function is just the original loop, executing

the rest (non-sparse) of the iterations to the end. Finally, the function ends

by returning to the instruction address that follows the loop in the original

function code.

Procedure 1 loopy function
1: procedure LOOPY

2: global i ← smallest remaining iteration No.

3: max i ← biggest remaining iteration No.

4: step ← No. of threads

5: threads i[step] ← smallest iteration No. in each thread

6: th ← thread No. with the smallest remaining iteration No.

7: while global i ≤ max i do
8: for j ← 1, step do
9: if threads i[th] ≤ max i then

10: do iteration threads i[th] work

11: threads i[th] ← threads i[th] + step
12: end if
13: th ← (th+ 1) mod step
14: global i ← global i+ 1
15: end for
16: end while
17: i ← next iteration No.

18: while i ≤ max do
19: do iteration work

20: i ← i+ 1
21: end while
22: end procedure

It is possible to inject a barrier at the end of the sparse area and continue exe-

cuting in parallel till this point and them perform OSR to continue serially. This

6



simplifies the problem greatly. However, it may happen that one thread is very

advanced in execution (may be finished), which results in parallel execution of

the whole loop, which was decided that it performs badly. Thus, in this proposed

work, we choose to perform OSR immediately.

4. Case Study

In this section we take two example programs to show how the serial code may

be better in performance than the parallel one. Section 4.1 inspects the effect of

changing input size, while Section 4.2 inspects the case of a program with heavy

synchronization overheads. For both cases, OpenMP is used for parallelization

and the experiments are run on Intel R© CoreTM i7-2670QM CPU @ 2.20 GHz

(4-cores).

4.1. Input Size
In this example, we use simple matrix multiplication C++ program. Matrix

multiplication is a good example to choose parallelization parameters, like threads

granularity, and observe thread parallelization (scheduling) overheads with chang-

ing the input size. This case may happen when executing a binary parallel program

on different input sizes, where there is no option to modify the program.

1 2 3 4 5 6 7 8

0.1

0.2

0.3

Number of Processors

T
im

e
(m

il
li

se
co

n
d

s)

64 Threads

32 Threads

16 Threads

8 Threads

4 Threads

2 Threads

1 Thread

Serial

(a) 32×32 matrix multiplication

1 2 3 4 5 6 7 8

200

300

400

Number of Processors

T
im

e
(m

il
li

se
co

n
d
s)

64 Threads

32 Threads

16 Threads

8 Threads

4 Threads

2 Threads

1 Thread

Serial

(b) 512×512 matrix multiplication

Figure 3: Matrix multiplication with different matrix sizes

Figure 3a shows the execution time (in milliseconds) of 32×32 matrix mul-

tiplication on different number of processors using different number of threads,

while Figure 3b shows the same for 512×512 matrix. As it appears clearly from

the figures, as the size of the matrix gets smaller, the parallelization tends to actu-

ally hurt performance, due to parallelization overheads, while the parallelization

overheads are compensated with the amount of work needed for calculation in

case of larger matrix.

7



4.2. Synchronization Overheads

0 1,000 2,000 3,000 4,000

0

1

2

3

4

5

·104

Estimated 200ms OSR Processing Time

Time Progress (milliseconds)

S
p
ee

d
(i

te
ra

ti
o
n
s/

se
co

n
d
)

Figure 4: Speed of parallel and

serialized over time

In this example, a simple summation C++

program that use locks heavily is used. The

summation variable is shared among threads

and is protected by a lock. The first half of the

program is run in parallel, while the other half

is sequential. As it appears from Figure 4, the

sequential part is more than 4 times faster than

the parallel one.

5. Conclusion and Future Work

In this paper, we consider, for the first time

(as much as we know), using OSR in parallel

binary code, without compiler instrumentation, to address the issue of poor perfor-

mance that may arise during runtime due to unpredicted overheads or environment

changes. In this initial study, we target simple loops.

We experimented with a set of a corresponding microbenchmarks; The ex-

periments showed a 4× performance improvement at heavy synchronized code

case. We proposed an initial design of the technique, and the algorithm used for

serialized code generation.

As a future work, the design will be implemented, tested and evaluated on

different use cases and different architectures. The technique can be extended to

cover more general types of loops as well as recursive kernels. A more detailed

proof of correctness will be considered.

Acknowledgement

This research is supported by a Ph.D. scholarship from the Egyptian Ministry

of Higher Education (MoHE). Also, this work is partially funded by the PHC

IMHOTEP project.

References

[1] Chambers, C., Ungar, D., 1991. Making pure object-oriented languages practical.

In: ACM SIGPLAN Notices. Vol. 26. ACM, pp. 1–15.

[2] D’Elia, D. C., Demetrescu, C., 2016. Flexible on-stack replacement in llvm. In:

Proceedings of the 2016 International Symposium on Code Generation and Opti-

mization. ACM, pp. 250–260.

8



[3] Duboscq, G., Würthinger, T., Stadler, L., Wimmer, C., Simon, D., Mössenböck,

H., 2013. An intermediate representation for speculative optimizations in a dynamic

compiler. In: Proceedings of the 7th ACM workshop on Virtual machines and inter-

mediate languages. ACM, pp. 1–10.

[4] Eyerman, S., Du Bois, K., Eeckhout, L., 2012. Speedup stacks: Identifying scaling

bottlenecks in multi-threaded applications. In: Performance Analysis of Systems

and Software (ISPASS), 2012 IEEE International Symposium on. IEEE, pp. 145–

155.

[5] Fink, S. J., Qian, F., 2003. Design, implementation and evaluation of adaptive

recompilation with on-stack replacement. In: Proc. of the int. symp. on CGO:

feedback-directed and runtime optimization. IEEE Computer Society, pp. 241–252.

[6] Hölzle, U., Chambers, C., Ungar, D., 1992. Debugging optimized code with dy-

namic deoptimization. In: ACM Sigplan Notices. Vol. 27. ACM, pp. 32–43.

[7] Lameed, N. A., Hendren, L. J., 2013. A modular approach to on-stack replacement

in LLVM. In: ACM SIGPLAN Notices. Vol. 48. ACM, pp. 143–154.

[8] Paleczny, M., Vick, C., Click, C., 2001. The Java hotspot TM server compiler.

In: Proc. of the 2001 Symp. on JVM Research and Technology Symp.-Volume 1.

USENIX Association, pp. 1–1.

[9] Soman, S., Krintz, C., 2006. Efficient and General On-Stack Replacement for Ag-

gressive Program Specialization. In: Software Engineering Research and Practice.

Citeseer, pp. 925–932.

[10] Suganuma, T., Yasue, T., Nakatani, T., 2003. A region-based compilation technique

for a Java just-in-time compiler. In: ACM SIGPLAN Notices. Vol. 38. ACM, pp.

312–323.

[11] Süsskraut, M., Knauth, T., Weigert, S., Schiffel, U., Meinhold, M., Fetzer, C., 2010.

Prospect: A compiler framework for speculative parallelization. In: Proc. of the 8th

annual IEEE/ACM int. symp. on CGO. ACM, pp. 131–140.

[12] Würthinger, T., Wimmer, C., Mössenböck, H., 2009. Array bounds check elimina-

tion in the context of deoptimization. Science of Computer Programming 74 (5),

279.

[13] Yusuf, M., El-Mahdy, A., Rohou, E., 2013. On-stack replacement to improve JIT-

based obfuscation a preliminary study. In: JEC-ECC, 2013 Japan-Egypt Int. Conf.

on. IEEE, pp. 94–99.

9


